Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(12)2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34208517

RESUMO

Superoxide dismutase 3 (SOD3), also known as extracellular superoxide dismutase, is an enzyme that scavenges reactive oxygen species (ROS). It has been reported that SOD3 exerts anti-inflammatory abilities in several immune disorders. However, the effect of SOD3 and the underlying mechanism in inflammatory bowel disease (IBD) have not been uncovered. Therefore, in the present study, we investigated whether SOD3 can protect intestinal cells or organoids from inflammation-mediated epithelial damage. Cells or mice were treated with SOD3 protein or SOD3-transduced mesenchymal stem cells (MSCs). Caco-2 cells or intestinal organoids stimulated with pro-inflammatory cytokines were used to evaluate the protective effect of SOD3 on epithelial junctional integrity. Dextran sulfate sodium (DSS)-induced colitis mice received SOD3 or SOD3-transduced MSCs (SOD3-MSCs), and were assessed for severity of disease and junctional protein expression. The activation of the mitogen-activated protein kinase (MAPK) pathway and elevated expression of cytokine-encoding genes decreased in TNF-α-treated Caco-2 cells or DSS-induced colitis mice when treated with SOD3 or SOD3-MSCs. Moreover, the SOD3 supply preserved the expression of tight junction (ZO-1, occludin) or adherence junction (E-cadherin) proteins when inflammation was induced. SOD3 also exerted a protective effect against cytokine- or ROS-mediated damage to intestinal organoids. These results indicate that SOD3 can effectively alleviate enteritis symptoms by maintaining the integrity of epithelial junctions and regulating inflammatory- and oxidative stress.


Assuntos
Colite/etiologia , Colite/metabolismo , Mucosa Intestinal/metabolismo , Células-Tronco Mesenquimais/metabolismo , Superóxido Dismutase/genética , Junções Íntimas/metabolismo , Animais , Biomarcadores , Células CACO-2 , Colite/patologia , Citocinas/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Humanos , Imuno-Histoquímica , Mediadores da Inflamação/metabolismo , Células-Tronco Mesenquimais/citologia , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Junções Íntimas/patologia
2.
J Invest Dermatol ; 141(10): 2344-2353.e7, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33836179

RESUMO

With aging, the skin becomes thin and drastically loses collagen. Extracellular superoxide dismutase (EC-SOD), also known as superoxide dismutase (SOD) 3, is the major SOD in the extracellular matrix of the tissues and is well-known to maintain the reduction‒oxidation homeostasis and matrix components of such tissues. However, the role of EC-SOD in aging-associated reductions of skin thickness and collagen production is not well-studied. In this study, we compared the histological differences in the dorsal skin of EC-SOD‒overexpressing transgenic mice (Sod3+/+) of different age groups with that in wild-type mice and also determined the underlying signaling mechanism. Our data showed that the skin thickness in Sod3+/+ mice significantly increased with aging compared with that in wild-type male mice. Furthermore, Sod3+/+ mice had promoted collagen production through the activation of adenosine monophosphate-activated protein kinase and Nrf2/HO-1 pathways in aged mice. Interestingly, subcutaneous injection of adeno-associated virus‒overexpressing EC-SOD exhibited increased skin thickness and collagen expression. Furthermore, combined recombinant EC-SOD and dihydrotestosterone treatment synergistically elevated collagen production through the activation of TGFß in human dermal fibroblasts. Altogether, these results showed that EC-SOD prevents skin aging by promoting collagen production in vivo and in vitro. Therefore, we propose that EC-SOD may be a potential therapeutic target for antiaging in the skin.


Assuntos
Proteínas Quinases Ativadas por AMP/fisiologia , Colágeno/biossíntese , Heme Oxigenase-1/fisiologia , Proteínas de Membrana/fisiologia , Fator 2 Relacionado a NF-E2/fisiologia , Envelhecimento da Pele , Superóxido Dismutase/fisiologia , Animais , Di-Hidrotestosterona/farmacologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
3.
BMB Rep ; 54(2): 142-147, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33612150

RESUMO

Synthetic oligodeoxynucleotides (ODNs) containing unmethylated CpG phosphorothioate (PS CpG-ODN) are known to decrease IgE synthesis in Th2 allergy responses. Nonetheless, the therapeutic role of PS CpG-ODN is limited due to cytotoxicity. Therefore, we developed a phosphodiester (PO) form of CpG-ODN (46O) with reduced toxicity but effective against allergies. In this study, we first compared the toxicity of 46O with CpG-ODNs containing a PS backbone (1826S). We also investigated the therapeutic efficacy and mechanism of 46O injected intravenously in a mouse model of ovalbumin (OVA)-induced atopic dermatitis (AD). To elucidate the mechanism of 46O underlying the inhibition of IgE production, IgE- and TGF-ô€…-associated molecules were evaluated in CD40/IL-4- or LPS/IL-4-stimulated B cells. Our data showed that the treatment with 46O was associated with a lower hematological toxicity compared with 1826S. In addition, injection with 46O reduced erythema, epidermal thickness, and suppressed IgE and IL-4 synthesis in mice with OVA-induced AD. Additionally, 46O induced TGF-ß production in LPS/IL-4-stimulated B cells via inhibition of Smad7, which suppressed IgE synthesis via interaction between Id2 and E2A. These findings suggest that enhanced TGF-ß signaling is an effective treatment for IgE-mediated allergic conditions, and 46O may be safe and effective for treating allergic diseases such as AD and asthma. [BMB Reports 2021; 54(2): 142-147].


Assuntos
Dermatite Atópica/tratamento farmacológico , Oligodesoxirribonucleotídeos/farmacologia , Fator de Crescimento Transformador beta/imunologia , Dermatite Atópica/imunologia , Humanos , Imunoglobulina E/imunologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA